ESTIMATING PEDESTRIAN SUSCEPTIBILITY TO TRAFFIC ACCIDENTS IN CURITIBA, BRAZIL

Autores

DOI:

https://doi.org/10.18224/baru.v7i1.8895

Palavras-chave:

road safety, logistic regression, spatial analysis, Geographic Information System

Resumo

Even though pedestrians represented 40% of all urban displacements in Brazil in 2017, they are still highly vulnerable to traffic accidents, with a mortality rate of 2.89 per 100 thousand inhabitants in 2018. The literature suggests a relationship between the occurrence of traffic accidents and demographic, socioeconomic, and urban structure variables. In this study, this relationship was investigated through a data-driven statistical model (logistic regression) combined with GIS spatial analysis, applied to estimate the pedestrian susceptibility to traffic accidents in the City of Curitiba, in Southern Brazil. By adopting broadly available spatial information, the proposed methods were robust in estimating the events, presenting an area under the ROC curve of 0.82 in the cross-validation. Additionally, the results highlighted a strong and statistically significant correlation between the pedestrian crashes and the analyzed variables of road system hierarchy, presence of BRT routes, land-use, population density and per capita income.

Downloads

Não há dados estatísticos.

Biografia do Autor

Cassiano Bastos Moroz, University of Twente

Engenheiro Civil, mestrando em Ciências da Geo-Informação e Observação da Terra

Tatiana Maria Cecy Gadda, Universidade Tecnológica Federal do Paraná

Arquiteta e Urbanista, Doutora em Ciências Ambientais Humanas e da Terra.

Jorge Tiago Bastos, Programa de Pós-Graduação em Planejamento Urbano Departamento de Transportes Universidade Federal do Paraná

Engenheiro Civil, Doutor em Engenharia de Transportes. Área de atuação: segurança viária.

Referências

AGARWAL, S., KACHROO, P. AND REGENTOVA, E. (2016) ‘A hybrid model using logistic regression and wavelet transformation to detect traffic incidents’, IATSS Research. International Association of Traffic and Safety Sciences, 40(1), pp. 56–63. doi: 10.1016/j.iatssr.2016.06.001.

AZIZ, H. M. A., UKKUSURI, S. V AND HASAN, S. (2013) ‘Exploring the determinants of pedestrian-vehicle crash severity in New York City’, Accident Analysis and Prevention. Elsevier Ltd, 50, pp. 1298–1309. doi: 10.1016/j.aap.2012.09.034.

BASSANI, M., ROSSETTI, L. AND CATANI, L. (2020) ‘Spatial analysis of road crashes involving vulnerable road users in support of road safety management strategies’, Transportation Research Procedia. Elsevier B.V., 45, pp. 394–401. doi: 10.1016/j.trpro.2020.03.031.

Bonham-Carter, G. F. (1994) Geographic Information Systems for geoscientists: modeling with GIS. Oxford: Pergamon.

BRAZIL (2001) Estatuto das Cidades [Statute of Cities]. Brazil. Available at: http://www.planalto.gov.br/ccivil_03/leis/leis_2001/l10257.htm.

BRAZIL (2012) Lei da Mobilidade [Mobility Law]. Brazil. Available at: http://www.planalto.gov.br/ccivil_03/_ato2011-2014/2012/lei/l12587.htm.

BRAZILIAN INSTITUTE OF GEOGRAPHY AND STATISTICS (2011) Características da população e dos domicílios: resultados do universo. Agregados por setores censitários [Characteristics of population and domiciles: universal results. Aggregated by census tract], Censo 2010 resultados. Available at: https://censo2010.ibge.gov.br/resultados.html (Accessed: 10 January 2020).

BRAZILIAN INSTITUTE OF GEOGRAPHY AND STATISTICS (2019) IBGE cidades: Curitiba [IBGE cities: Curitiba]. Available at: https://cidades.ibge.gov.br/brasil/pr/curitiba/panorama (Accessed: 15 July 2020).

BRAZILIAN MINISTRY OF HEALTH (2020) Mortes no trânsito - dados definitivos de 2018 [Deaths on traffic - definitive data for 2018], MS/SVS/CGIAE - Sistema de Informações sobre Mortalidade - SIM. Available at: http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sim/cnv/ext10uf.def (Accessed: 29 April 2020).

BRAZILIAN NATIONAL ASSOCIATION OF PUBLIC TRANSPORT (2020) Sistema de informações da mobilidade urbana da Associação Nacional de Transportes Público - relatório geral 2017 [Information system of urban mobility from the National Agency of Public Transport - general report 2017]. Available at: http://files.antp.org.br/simob/sistema-de-informacao-de-mobilidade-urbana-da-antp--2017.pdf.

CHEN, P. AND ZHOU, J. (2016) ‘Effects of the built environment on automobile-involved pedestrian crash frequency and risk’, Journal of Transport & Health. Elsevier, 3(4), pp. 448–456. doi: 10.1016/j.jth.2016.06.008.

CHIMBA, D., MUSINGUZI, A. AND KIDANDO, E. (2018) ‘Associating pedestrian crashes with demographic and socioeconomic factors’, Case Studies on Transport Policy. Elsevier, 6(1), pp. 11–16. doi: 10.1016/j.cstp.2018.01.006.

CITY OF CURITIBA (2019) Lei de Zoneamento, Uso e Ocupação do Solo [Zoning, Land-use and Occupation Law]. Brazil. Available at: https://ippuc.org.br/visualizar.php?doc=http://admsite2013.ippuc.org.br/arquivos/documentos/D311/D311_015_BR.pdf.

COX, N. J. (2007) Transformations: an introduction. Available at: http://fmwww.bc.edu/repec/bocode/t/transint.html (Accessed: 2 March 2020).

CURITIBA INSTITUTE OF RESEARCH AND URBAN PLANNING (2018a) Acidentes de trânsito com vítimas fatais. Município de Curitiba [Traffic accidents with fatal victims. Municipality of Curitiba], Projeto Vida no Trânsito. Available at: http://www.ippuc.org.br/mapasinterativos/AcidentesDeTransito/dashboard.html (Accessed: 10 January 2020).

CURITIBA INSTITUTE OF RESEARCH AND URBAN PLANNING (2018b) Zoneamento - polígonos [Zoning - polygons], Dados Geográficos. Available at: https://ippuc.org.br/geodownloads/geo.htm (Accessed: 10 January 2020).

CURITIBA INSTITUTE OF RESEARCH AND URBAN PLANNING (2019) Eixos de rua [Street axis], Dados Geográficos. Available at: https://ippuc.org.br/geodownloads/geo.htm (Accessed: 10 January 2020).

CURITIBA URBANISATION (2015) Curitiba. Rede integrada de transporte coletivo de Curitiba [Curitiba. Integrated public transport network of Curitiba]. Available at: https://www.urbs.curitiba.pr.gov.br/PORTAL/publicador/intranet/BOLETRANS/boletim/upload/1867-20150415135315_5.pdf (Accessed: 15 February 2020).

DAI, D. AND JAWORSKI, D. (2016) ‘Influence of built environment on pedestrian crashes: a network-based GIS analysis’, Applied Geography. Elsevier Ltd, 73, pp. 53–61. doi: 10.1016/j.apgeog.2016.06.005.

DING, C., CHEN, P. AND JIAO, J. (2018) ‘Non-linear effects of the built environment on automobile-involved pedestrian crash frequency: a machine learning approach’, Accident Analysis and Prevention. Elsevier, 112, pp. 116–126. doi: 10.1016/j.aap.2017.12.026.

FACULTY OF GEO-INFORMATION SCIENCE AND EARTH OBSERVATION (ITC) (2013) ‘Models and modelling’, in The core of GIScience: a systems-based approach. Enschede, pp. 41–48.

GRISÉ, E. et al. (2018) ‘A geography of child and elderly pedestrian injury in the City of Toronto, Canada’, Journal of Transport Geography. Elsevier, 66, pp. 321–329. doi: 10.1016/j.jtrangeo.2017.10.003.

HA, H. AND THILL, J. (2011) ‘Analysis of traffic hazard intensity: a spatial epidemiology case study of urban pedestrians’, Computers, Environment and Urban Systems. Elsevier Ltd, 35(3), pp. 230–240. doi: 10.1016/j.compenvurbsys.2010.12.004.

JAMES, G. et al. (2013) An introduction to statistical learning: with applications in R. Springer T. New York: Springer Science+Business Media. doi: 10.1007/978-1-4614-7138-7.

KIM, K., BRUNNER, I. M. AND YAMASHITA, E. Y. (2006) ‘Influence of land use, population, employment, and economic activity on accidents’, Journal of the Transportation Research Board, 1953, pp. 56–64. doi: 10.3141/1953-07.

LASCALA, E. A., GERBER, D. AND GRUENEWALD, P. J. (2000) ‘Demographic and environmental correlates of pedestrian injury collisions: a spatial analysis’, Accident Analysis and Prevention, 32, pp. 651–658. doi: 10.1016/S0001-4575(99)00100-1.

LEVINSON, H. ET AL. (2002) ‘Bus Rapid Transit: an overview’, Journal of Public Transportation, 5(2), pp. 1–30. doi: 10.5038/2375-0901.5.2.1.

LOUKAITOU-SIDERIS, A., LIGGETT, R. AND SUNG, H. (2007) ‘Death on the crosswalk in Los Angeles’, Journal of Planning Education and Research, pp. 338–351. doi: 10.1177/0739456X06297008.

MARICATO, E. (2008) ‘O automóvel e a cidade [The automobile and the city]’, Ciência e Ambiente, 37, pp. 5–12.

MERCIER, J. ET AL. (2016) ‘Policy tools for sustainable transport in three cities of the Americas: Seattle, Montreal and Curitiba’, Transport Policy. Elsevier, 50, pp. 95–105. doi: 10.1016/j.tranpol.2016.06.005.

MOHAN, D. AND BANGDIWALA, S. I. (2017) ‘Urban street structure and traffic safety’, Journal of Safety Research, 62, pp. 63–71. doi: 10.1016/j.jsr.2017.06.003.

MOTTA, B. G. (2017) A bikeability index for Curitiba (Brazil). University of Twente.

NOLAND, R. B., KLEIN, N. J. AND TULACH, N. K. (2013) ‘Do lower income areas have more pedestrian casualties??’, Accident Analysis and Prevention. Elsevier Ltd, 59, pp. 337–345. doi: 10.1016/j.aap.2013.06.009.

RANKAVAT, S. AND TIWARI, G. (2016) ‘Pedestrians risk perception of traffic crash and built environment features – Delhi , India’, Safety Science. Elsevier Ltd, 87, pp. 1–7. doi: 10.1016/j.ssci.2016.03.009.

REGMI, N. R., GIARDINO, J. R. AND VITEK, J. D. (2010) ‘Modeling susceptibility to landslides using the weight of evidence approach: Western Colorado, USA’, Geomorphology. Elsevier B.V., 115(1–2), pp. 172–187. doi: 10.1016/j.geomorph.2009.10.002.

SCHNEIDER, R. J., RYZNAR, R. M. AND KHATTAK, A. J. (2004) ‘An accident waiting to happen: a spatial approach to proactive pedestrian planning’, Accident Analysis and Prevention, 36, pp. 193–211. doi: 10.1016/S0001-4575(02)00149-5.

SELTMAN, H. J. (2018) Experimental design and analysis. Pittsburgh: Carnegie Mellon University. Available at: http://www.stat.cmu.edu/~hseltman/309/Book/Book.pdf.

SIDDIQUI, C., ABDEL-ATY, M. AND CHOI, K. (2012) ‘Macroscopic spatial analysis of pedestrian and bicycle crashes’, Accident Analysis and Prevention. Elsevier Ltd, 45, pp. 382–391. doi: 10.1016/j.aap.2011.08.003.

SILVA, A. N. R. DA, COSTA, M. DA S. AND MACEDO, M. H. (2008) ‘Multiple views of sustainable urban mobility: the case of Brazil’, Transport Policy, 15, pp. 350–360. doi: 10.1016/j.tranpol.2008.12.003.

SZE, N. N. AND WONG, S. C. (2007) ‘Diagnostic analysis of the logistic model for pedestrian injury severity in traffic crashes’, Accident Analysis and Prevention, 39, pp. 1267–1278. doi: 10.1016/j.aap.2007.03.017.

TAO, L. et al. (2015) ‘The traffic accident hotspot prediction: based on the logistic regression method’, ICTIS 2015 - 3rd International Conference on Transportation Information and Safety, Proceedings, (May), pp. 107–110. doi: 10.1109/ICTIS.2015.7232194.

UKKUSURI, S. et al. (2012) ‘The role of built environment on pedestrian crash frequency’, Safety Science. Elsevier Ltd, 50(4), pp. 1141–1151. doi: 10.1016/j.ssci.2011.09.012.

UNITED NATIONS (2018) World urbanization prospects, Demographic Research. doi: 10.4054/demres.2005.12.9.

UNITED NATIONS (2020) ‘Stockholm Declaration’, in Third Global Ministerial Conference on Road Safety: Achieving Global Goals 2030, pp. 19–20.

VASCONCELLOS, E. A. (1997) ‘The demand for cars in developing countries’, Transportation Research Part A: Policy and Practice, 31(3), pp. 245–258. doi: 10.1016/S0965-8564(96)00021-3.

WEDAGAMA, D. M. P., BIRD, R. N. AND METCALFE, A. V (2006) ‘The influence of urban land-use on non-motorised transport casualties’, Accident Analysis and Prevention, 38, pp. 1049–1057. doi: 10.1016/j.aap.2006.01.006.

YILDIZ, K. AND ATE?, A. D. (2020) ‘Evaluation of level crossing accident factors by logistic regression method: a case study’, Iranian Journal of Science and Technology - Transactions of Civil Engineering. Springer International Publishing, (April). doi: 10.1007/s40996-020-00367-z.

Downloads

Publicado

01.10.2021

Como Citar

MOROZ, C. B.; GADDA, T. M. C.; BASTOS, J. T. ESTIMATING PEDESTRIAN SUSCEPTIBILITY TO TRAFFIC ACCIDENTS IN CURITIBA, BRAZIL. Revista Baru - Revista Brasileira de Assuntos Regionais e Urbanos, Goiânia, Brasil, v. 7, n. 1, p. 21, 2021. DOI: 10.18224/baru.v7i1.8895. Disponível em: https://seer.pucgoias.edu.br/index.php/baru/article/view/e8895. Acesso em: 24 jun. 2024.

Edição

Seção

Artigos